Gas Safety and Regulating Trains for Inlet Pressures up to max. 4 bar

10.03

Contents

Pa	a	e
1 0	ч	U

Description	Page
Technical description Application General layout of regulating train with R 101 General layout of regulating train with RS 250/RS 251 General layout of solenoid valve train	3 3 4 4 5
Regulating train components Ball valve Gas filter up to 4 bar Gas filter up to 16 bar S 100 safety shut-off valve R 101 gas pressure regulator RS 250/RS 251 gas pressure regulator FRSBV 1010 safety blow-off valve Gas pressure switch Gas volume control valve Compensator Solenoid valve Valve leak testers	5 5 6 7 8 10 10 10 10 10 10
Data for definition of regulating trains Flashover flow rate conversion Nominal width calculation of fittings Nominal width definition of control valves and solenoid valves	12 12 12 12
Nominal width definition of regulating train fittings Nominal width definition of tubings Size definition of control valve nominal widths Flow rate and pressure difference of solenoid valves Flow rate and pressure difference of ball valve and GF gas filter High-pressure filter flow rate, pressure difference and flow speed SAV performance characteristics, type S 100 SBV performance characteristics of R 101 pressure regulator Performance characteristics of RS 250 pressure regulator Performance characteristics of R 251 pressure regulator	13 13 14 14 15 15 15 15 16 16 17
Operating instructions Installation and assembly Commissioning Output pressure setting SBV setting SAV release SAV function control and SAV setting Faults Maintenance	18 18 18 18 19 19 19
Technical specifications, dimensions, ordering information KH ball valves GF gas filters Solenoid valves R 101 gas pressure regulators S 100 safety shut-off valves RS 250 gas pressure regulators including SAV RS 251 gas pressure regulators including SAV SL 10 safety blow-off valves Control valves Compensators, spacing rings, reducing valves Pre-welded flanges, steadying zones	20 20 21 21 21 21 21 21 22 22 22
DUNGS system solutions	23

2

Gas Safety and Regulating Trains for Inlet Pressures up to max. 4 bar

Technical description

The gas regulating trains described in this datasheet comprise: a central pressure train comprising ball valve and gas filter, safety shut-off valve as defined in DIN 3381, pressure regulator as per DIN 3380 for inlet pressures up to 4 bar, steadving zone comprising pressure indicators for inlet	Depending on individual requirements, the trains are additionally equipped with test burner and/or vent cock, gas volume control valve, maximum pressure switch, gas pressure display units, gas volume measuring units ignition gas or pilot trains, etc.
and output pressures, safety blow-off valves as defined in DIN 3381 and pipe jointing elements	Equipment and assembly of the regulating trains for inlet pressures exceeding 100 mbar correspond to the tech- nical regulations specified in DVGW worksheets G 490 (medium pressure > 0.1 to 4 bar).
and the solenoid valve train comprising a minimum gas pressure switch as per DIN EN 1854, two solenoid valves, Group A safety shut-off valves as defined in EN 161, valve proving system (Closed position indicator optional).	Each unit is tested for leaks and proper functioning. The complete assembled regulation train is re-tested for leaks.

Application

Each gas regulating train is engineered individually as specified in the system requirements and geared to the burner system or gas-consumers.

They are used for a burner in industrial and commercial gas-firing systems or for several burners in supply stations with built-in pressure regulators as defined in DIN 3392 or DIN 3380, corresponding to control class RG 10. The regulating trains are designed for non-aggressive

gases as well as for all industrial fuel gases as specified in DVGW worksheet G 260/I.

Approvals

EU type test approval as per EU Gas Appliance Directive. Approvals in other important gas-consuming countries.

Gas train including booster section, Installation in an IP64 control cabinet, customer-specific application in process engineering.

Gas Regulating Trains: Medium Pressure Part for Inlet Pressures up to max. 4 bar

General layout

Regulating train comprising R 101 pressure regulator, S 100 safety shut-off valve and SL 10 blow-off valve

Regulating train comprising RS 250/RS 251 pressure regulator, built-in safety shut-off valve and SL 10 blow-off valve

Legend

- 1 Ball valve
- 2 Gas filter
- 3 Adapter
- 4 S 100 safety shut-off valve
- 4* Safety shut-off valve (SAV)
- 5 Pressure compensation valve
- 6 Pulse line to SAV

- 7 R 101 pressure regulator
- 7* RS 250/RS 251 pressure regulator
- 8 Pulse line to pressure regulator
- 9 Steadying zone
- 10 Manometer and pushbutton valve
- 11 Minimum gas pressure switch
- 12 Safety blow-off valve (SBV)

- 13 Shut-off valve
- 14 Compensator
- 15 Reducer
- L External ventilation
- * Pressure regulator and safety shut-off valve built in common housing

Gas Regulating Trains: Low-pressure Part for Inlet Pressures up to 500 mbar

General layout

Solenoid valve trains comprising control valve, valve leak tester, test burner and pressure monitor

Legend

- 10 Manometer and pushbutton valve
- 11 Minimum gas pressure switch
- 16 Flanged adapter
- 17 Blow-off valve
 - ow-off valve
- 18 PB 2 test burner
- 19 Solenoid valve
- 20 VDK valve leak tester
- 21 K 01 main contact
- **Regulating train components**

Functional description of ball valve, gas filter and compensator

Ball valve

Series: **KH 160040** to **160200**,

DN 40 to DN 200, Max. operating temperature: up to 16 bar Temperature range: -20°C to +70°C Length: short - to DIN 3202 Cast-iron housing, stainless Ball design: full ball, Perpunan seal PN 16 flanges to DIN 2533 matching PN 16 pre-weld flanges to DIN 2633

For manual shut-off and releasing of gas supply.

Gas filter up to 4 bar

Series: **GF 40040/2** to **40100/2**, DN 40 to DN 100.

Filter as defined in DIN 3386 including extremely high dust storage capacity, Pore size of filter insert: < 50 µm, Max. operating pressure up to 4 bar Temperature range: -15°C to +80°C, Aluminium housing Flanges to DIN 2501, part 1, matching PN 16 pre-weld flanges to DIN 2633

To protect downstream fittings against contamination.

- 22 Control valve and motor drive
- 23 Maximum gas pressure switch
 - External ventilation

Gas filter up to 16 bar

Series: 254 016 to 1506 016,

DN 40 to DN 150, Filter as defined in DIN 3386 including extremely high dust storage capacity Pore size of filter insert: < 5 μ m, Max. operating pressure up to 16 bar Temperature range: -15°C to +80°C Nodular graphite cast-iron housing

(GGG 40.3) Flanges to DIN 2533, drilled, matching PN 16 pre-weld flanges to DIN 2633

To protect downstream fittings against contamination.

Safety Shut-off Valve (SAV)

S 100 safety shut-off valve

Series: **S 100**, DN 25 to DN 200, Safety shut-off valve as defined in DIN 3381

Max. operating pressure up to **4 bar**, Temperature range: -20 to +70°C Silumin cast housing

Internal parts: stainless steel, hardened

Diaphragm: Perbunan fabric Valve seal: vulcanized Perbunan PN 16 flanges as defined in DIN 2533 matching PN 16 pre-weld flanges as per DIN 2633.

The safety shut-off valve (SAV) acts as the main safety device against over-pressure. It prevents an excessive in-crease in output pressure downstream of the gas pressure regulator.

The SAV is open during operation. If it attains the upper setpoint pressure, the SAV cuts off the gas supply.

At the same time the minimum gas pressure is monitored, i.e. the SAV also closes if a lower setpoint pressure (gas drop) is attained.

Only manual unlocking is possible. The safety shut-off valve is installed upstream of the gas pressure regulator. The SAV receives the unlocking pulse via a control line from the steadying zone located downstream of the gas pressure regulator.

S 100-K safety shut-off valve

In addition to size DN 50 of series **S 100** we can supply a safety shut-off valve with a very short length of 180 mm.

Designation: S 100-K, DN 50

Additional equipment

When used as gas/air drop protection, you can install a pilot valve in the pulse line (type S 50-Rp 3/8).

Note on Spring Table I:

Use a 222 mm dia. meter comprising a GMB 186 diaphragm for very low shut-off pressures. The unlocking ranges are then reduced by half.

Insert a ring in the 162 mm dia. meter for higher shut-off pressures. The unlocking ranges must then be multiplied by a factor of 2.5.

Function of SAV

The controlled output pressure arriving from a pulse line (15) acts on the diaphragm (13) of the safety shut-off valve.

The meter (6) raises or lowers at overpressure and/or pressure drop. The meter operates on the ball shut-off principle. If the permitted pressure is exceeded, the meter is pressed against the maxi-mum spring (10), the balls (12) release the spindle (5), and the closing spring (4) presses the valve plate (7) against the valve seat (2).

The minimum spring (11) moves the meter in the opposite direction during a pressure drop.

The trip mechanism is then activated and the closing spring presses the valve plate against the valve seat.

If you want to restore gas flow after fault elimination, pull the reset button (9) down.

Pressure compensation must first be provided on both sides of the valve plate (3) by shortly opening and then firmly closing the pressure compensation valve (1) at the housing.

If the trip pressures need to be reset due to changes in operating conditions, in-crease the maximum trip pressure by turning the spring plate (7) clockwise and reduce it by turning the spring plate counterclockwise. A minimum trip can also be set using the spring plate (8).

S 100 shut-off valve Spring Table I (DN 25 to DN 100)

162 mm dia. meter, GMB 135 diaphragm

Trip at overpressure	Spring no.
up to 50 mbar	F 96
up to 200 mbar	F 97
up to 300 mbar	F 95
up to 400 mbar	F 94
up to 500 mbar	F 95*
up to 750 mbar	F 94*
Trip at pressure drop	Spring no.
1020 mbar	F 93
2040 mbar	F 92 B
4060 mbar	F 92
up to 120 mbar	F 91

* Special design with ring insert

- 1 Pressure compensation valve
- 2 Valve seat
- 3 Valve plate
- 4 Closing spring
- 5 Valve spindle
- 6 Meter
- 7 Minimum pressure setting
- 8 Maximum pressure setting
- 9 Reset button
- 10 Maximum spring
- Minimum spring
 Ball
- 13 Diaphragm
- 14 Vent
- 15 Pulse connection

S 100 safety shut-off valve Spring Table II (DN 150 to DN 200)

183 mm dia. meter, GMB 146 diaphragm

Trip at overpressure	Spring no.
up to 50 mbar	F 38 B
up to 80 mbar	F 38
up to 140 mbar	F 39
up to 220 mbar	F 40
up to 300 mbar	F 41
up to 550 mbar	F 40*
up to 750 mbar	F 41*
Trip at pressure drop	Spring no.
up to 15 mbar	F 46
15 30 mbar	F 45
40 60 mbar	F 47
70100 mbar	F 471
up to 0.3 bar	F 48

Gas Pressure Regulator

R 101 gas pressure regulator

Series: R 101, DN 25 to DN 100 Pressure regulator as defined in DIN 3380,

RG 10 regulator group and SG 20 closing pressure group

Max. inlet pressure: pi up to 4 bar, Max. output pressure: pa

up to **750 mbar**,

Temperature range: -20°C to +70°C Silumin cast housing

Internal parts: stainless steel, hardened Diaphragms: Belloframrolling dia-phragms Valve seal: Perbunan, vulcanized Single-seated valve with pre-pressure compensation, air-tight seal PN 16 flanges as defined in DIN 2533, matching PN 16 pre-weld flanges as per DIN 2633.

The pressure regulator constantly maintains output pressure within the permitted control deviation (RG 10), irrespective of inlet pressure or gas flow rate. The regulating group meets the operating requirements of standard firing systems.

The pressure regulator closes tight at zero flow rate and when an inlet pressure is present.

R 101-K gas pressure regulator

In addition to size DN 50 of series S100, we can supply a pressure regulator with a very short length of 180 mm. Designation: R 101-K, DN 50

Note: Design with larger valves

For pressure differences up to 50 mbar, the valves can be enlargened to nearly full DN diameter. Flow rates are then increased as listed below:

	Factor	to valve
DN 25	2.0	V 17,5
DN 50	1.5	V 47,5
DN 65	1.6	V 60
DN 100	1.8	V 80

R 101 gas pressure regulator Spring Table to DN 25

Pressure range	Spring no.
up to 30 mbar	F 103 B
25 75 mbar	F 103
70125 mbar	F 104
110220 mbar	F 107

Function

Gas flows in the arrow direction through the housing. Pressure is applied to the main diaphragm (3) on the output side from below via a pulse line (5). The valve plate (8) is suspended directly and is independent of the inlet pressure due to an intermediate diaphragm (6). The desired output

Block diagram of R 101

pressure can be adjusted at the setting screw (1) of the load spring (2).

Output pressure setting:

Turn the setting screw (1) clockwise to increase the output pressure and turn counterclockwise to reduce the output pressure.

- Setting screw 1
- 2 Load spring 3 Main diaphragm
- 4 Vent
- 5
- Pulse connection
- Intermediate diaphragm 6 Valve seat 7
- 8 Valve plate
- Closing cover 9

R 101 gas pressure regulator Spring Table to DN 40, DN 50 Diaphragm diameter: 375 mm

Pressure setting range	Spring no.
up to 22 mbar	F 1
22 40 mbar	F 2
38 55 mbar	F 3
46 65 mbar	F 4
60 96 mbar	F 5
85130 mbar	F 6
125180 mbar	F 7
160240 mbar	F 8
195300 mbar	F 9

Regulator pressure increases

Use different diaphragm diameters to increase the above mentioned regulator pressures as follows:

R 101 gas pressure regulator Spring Table to DN 40, DN 50 Diaphragm diameter: 375 mm

Pressure setting range	Spring no.
up to 10 mbar	F 1
10 18 mbar	F 2
17 24 mbar	F 3
21 30 mbar	F 4
27 42 mbar	F 5
39 60 mbar	F 6
55 84 mbar	F 7
71108 mbar	F 8
88132 mbar	F 9

Diaphragm version Regulator pressure 205 mm dia. diaphragm 2 times 160 mm dia. diaphragm 4 times

Gas Pressure Regulator with Built-in Safety Shut-off Valve

Series: RS 250, DN 25 to DN 200, Max. inlet pressure: pi up to DN 150: 6 bar, up to DN 200 4 bar, max. output pressure p_0 : up to **1.2 bar**,

Series: RS 251, DN 50 and DN 80, max. inlet pressure pi: up to 4 bar, max. output pressure po: up to 750 mbar,

Pressure regulators as defined in DIN 3380 with built-in safety shut-off valve complying with DIN 3381, RG 10 regulator group and SG 20 closing pressure group Temperature range: -20°C to +70°C Silumin cast or nodular graphite castiron housing (GGG 40) Internal parts: stainless steel, hardened Diaphragm: Perbunan fabric Valve seal: vulcanized Perbunan PN 16 flanges as defined in DIN 2533, matching PN 16 pre-weld flanges complying with DIN 2633

A safety shut-off valve is built in the regulator housing to cut off the gas supply at overpressure and/or pressure drop. If no SAV be installed, the opening in the housing is provided with a closing cover. This type is designed as follows: R 250/R251.

The safety shut-off valve (SAV) acts as the main protection device against overpressure. It prevents an excessive increase in output pressure downstream of the gas pressure regulator.

The SAV is open during operation. If it attains the upper setting pressure, the SAV cuts off the gas supply.

At the same time the minimum gas pressure is monitored, i.e. the SAV also closes if a lower setpoint pressure (gas drop) is attained. Only manual unlocking is possible.

The safety shut-off valve is installed upstream of the gas pressure regulator. The SAV receives the unlocking pulse via a control line from the steadying zone located downstream of the gas pressure regulator.

The pressure regulator constantly maintains the output pressure within the permitted control deviation (RG10), irrespective of inlet pressure or gas flow rate.

The regulating group meets the operating requirements of standard firing systems.

The pressure regulator closes tight at zero flow rate and when an inlet pressure is present.

- 1 Pressure regulator setting screw 2
- Load spring 3
 - Main diaphragm
- 4 Vent 5
 - Pulse connection
- 6 Intermediate diaphragm
- 7 Valve seat
- 8 Valve plate 9
- Closing cover 10 SAV diaphragm
- 11 Ball

Function

Gas flows in the arrow direction through the housing. Pressure is applied to the main diaphragm (3) on the output side from below via a pulse line (5). The valve plate (8) is suspended directly and is independent of the inlet pressure due an intermediate diaphragm (6).

The desired output pressure can be adjusted at the setting screw (1) of the load spring (2).

- Minimum spring
- 13 Maximum spring
- 14 Pressure compensation valve
- 15 SAV valve seat
- 16 Valve plate
- 17 Closing spring
- 18 Valve spindle
- 19 Meter

12

- 20 Minimum pressure setting
- 21 Maximum pressure setting
- 22 Reset button

Output pressure setting:

Turn the setting screw (1) clockwise to increase the output pressure and turn counterclockwise to reduce the output pressure.

The controlled output pressure arriving from a pulse line (5) acts on the diaphragm (10) of the safety shut-off valve. The meter (19) raises or lowers at overpressure and/or pressure drop.

The meter operates on the ball shut-off principle. If the permitted pressure is exceeded, the meter is pressed against the maximum spring (13), the balls (11) release the spindle (18), and the closing spring (17) presses the valve plate (16) against the valve seat (15).The minimum spring (12) moves the meter in the opposite direction during a pressure drop. The trip mechanism is then activated and the closing spring presses the valve plate against the valve seat.

If you want to restore gas flow after fault

RS 250/251 gas pressure regulator Spring Table to DN 25 and DN 50

Pressure setting range	Spring no.
0 17 mbar	0 1
15 23 mbar	0 2
20 37 mbar	0 3
35 50 mbar	0 4
46 70 mbar	0 5
90100 mbar	0 6
125135 mbar	0 7
150210 mbar	0 8
190260 mbar	0 9
240500 mbar	1 0

RS 250/251 gas pressure regulator Spring Table to DN 80 and DN 100

Pressure setting range	Spring no.
0 10 mbar	0 1
10 18 mbar	0 2
17 24 mbar	0 3
21 30 mbar	0 4
27 42 mbar	0 5
39 60 mbar	0 6
55 84 mbar	0 7
71108 mbar	0 8
88132 mbar	0 9
104156 mbar	1 0
125300 mbar	1 1
500 mbar	1 2

RS 250/251 gas pressure regulator Spring Table to DN 150 and DN 200

Pressure setting range	Spring no.
0 10 mbar 10 20 mbar 18 28 mbar 25 40 mbar 30 60 mbar	F 70 F 71 F 711 F 72 F 73
50 90 mbar	F 74
Can be set up to approx. 1.2 bar using different springs and meters.	

elimination, pull the reset button (22) down. Pressure compensation must first be provided on both sides of the valve plate (16) by shortly opening and then firmly closing the pressure compensation valve (14) at the housing.

If the trip pressures need to be reset due to changes in operating conditions, increase the maximum trip pressure by turning the spring plate (21) clockwise and reduce it by turning the spring plate counterclockwise. A minimum trip can also be set using the spring plate (22).

RS 250/251 safety shut-off valve Spring Table I (DN 50 to DN 100)

162 mm dia. meter, GMB 135 diaphragm

Trip at overpressure	Spring no.
up to 50 mbar up to 200 mbar up to 300 mbar up to 400 mbar	F 96 F 97 F 95 F 94
Trip at pressure drop	Spring no.
1020 mbar 2040 mbar 4060 mbar up to 120 mbar	F 93 F 92 B F 92 F 91

Note on Spring Table I:

Use a 222 mm dia. meter comprising a GMB 186 diaphragm for very low shut-off pressures. The unlocking ranges are then reduced by half.

Insert a ring in the 162 mm dia. meter for higher shut-off pressures. The unlocking ranges must then be multiplied by a factor of 2.5.

RS 250/251 safety shut-off valve Spring Table II (DN 150 to DN 200)

183 mm dia. meter, GMB 146 diaphragm

Trip at overpressure	Spring no.
up to 50 mbar	F 38 B
up to 80 mbar	F 38
up to 140 mbar	F 39
up to 220 mbar	F 40
up to 300 mbar	F 41
Trip at pressure drop	Spring no.
015 mbar	F 46
1530 mbar	F 45
4060 mbar	F 47
70100 mbar	F 471
up to 0,3 bar	F 48

Ordering information for pressure regulators, safety shutoff valves and safety blow-off valves

When ordering a pressure regulator, please supply us with the following spe-cifications:

Device type	
Gas type	
Nominal width	DN
Flow rate	m ³ n/h
Inlet pressure P _i	bar
Output pressure range Po	bar/mbar

When ordering a safety shut-off valve, the following additional information is required:

Trip pressure
$$P_s$$
 bar
($P_s = \sim 1, 4...1, 6 P_a$)

When ordering a safety blow-off valve, the following additional information is required:

Opening pressure Po	bar
$(P_{o} = ~1, 11, 3 P_{a})$	

When modifying a pressure range, the following specifications must be entered on the rating plate:

Device type (existing device)			
Device number			
Nominal width	DN		
Diaphragm diameter	mm		
Inlet pressure P _i	bar		
Output pressure range Po	bar/mbar		
Trip pressure P _S	bar		

Only trained and qualified personnel must be permitted to perform any modifications. Finally, perform a leak test.

Safety blow-off valve (SBV)

Series: **FRSBV**, Rp 1 Max. vent pressure: up to **1 bar**,

Safety blow-off valve (SBV) as defined in DIN 3381 Temperature range: -15°C to +70°C Silumin cast housing Diaphragm: NBR Valve seal: NBR Rp thread in accordance with ISO 7/1

The safety blow-off valve (SBV) is required as an additional safety device. If a gas leak occurs, e.g. at an untight gas pressure regulator, the SBV prevents the activation of the safety shut-off valve.

An excessive pressure increase can occur if the gas pressure regulator supplies an excessive output pressure or the SAV is untight and allows leakage gas to flow.

The blow-off pressure of the SBV is adjusted to the upper trip pressure of the SAV. If an impermissible pressure

Gas pressure switch

Series: **GW** ..

Pressure switch as defined in DIN EN 1854

Pressure ranges of **0.4** to **6000 mbar**, Ambient temperature: -15°C to +60°C Medium temperature: -15°C to +80°C Housing: Aluminium die cast Switch: Polycarbonate Diaphragm: NBR or EPDM Switch contacts: Fine silver or galvanized fine silver, gold-plated GW.. pressure switch, UB.. and NB..

Gas volume control valve

Series: UR-6 G,

Gas volume control valve for installation in pipes and connection flanges as defined in DIN 2633, PN 16. Max. operating pressure: up to **6 bar**, Temperature range: -15°C to +60°C Housing: GG-25, grey cast-iron Shaft: Ms-58 brass, as defined in DIN 17660 External seal: O-rings Regulator disk: steel, zinc-plated Nirosta shaft and disk on request (surcharge).

Permitted difference pressure

DN	25 -	DN	50	4 bar
DN	65 -	DN	100	2 bar
DN	125 -	DN	200	1 bar

increase occurs, the SBV is first activated and, if a further pressure increase occurs, the SAV is tripped.

The SBV is always installed downstrem of the gas pressure regulator.

Opening pressure range	Spring no.
20 100 mbar	226 381
70 350 mbar	226 382
300 1000 mbar	226 383

Sectional drawing of FRSBV

- 1 Housing
- 2 Spindle
- 3 Sealing ring
- 4 Control disk
- 5 Intermediate disk
- 6 Operating diaphragms
- 7 Safety diaphragms
- 8 Diaphragm disk9 Reference value spring
- 10 Cover
- 11 Adjuster
- 12 Protective cap
- 13 Vent plug

pressure limiters as well as GW../GW.. double pressure switches are designed for switching a circuit on, off or over if the pressure actual value changes in relation to the setpoint.

The switching point can be set by means of a scale integrated on the setting wheel.

Refer to DUNGS pressure switch datasheets for detailed information on designs, ranges, protection classes, etc.

Different setting ranges by means of toothed scale and handle with 90° grid. We supply continuous fine adjustment or motor actuator for the regulating valve. Actuators: Commercial motors can be retrofitted.

Compensator

Series: St FBDN 40 to DN 200 Compensator complying with DIN 30 681 Max. operating pressure up to **10 bar**, Temperature range: -15°C to +80°C Steel housing

Flanges complying with DIN 2501, Part 1, matching pre-weld flanges as defined in DIN 2633, PN 16. To protect the regulating train against stresses.

Solenoid valve

Series: MV..., DMV...

Safety shut-off valve of Group A as defined in EN 161 Nominal widths: Rp 3/8 to Rp 2 1/2 or DN 20 to DN 200 Max operating overpressure: up to 0.2 bar or up to 0.5 bar. Pressure level: PN 1 Ambient temperature: -15°C to +60°C Silumin cast housing Internal parts: no non-ferrous metals Valve seat seal on NBR basis Dirt trap: integrated sieve No-load closed Fast open, fast close Closing time: < 1 sOpening time: < 1 sMain flow manually adjustable

Valve leak testers

Compact valve leak tester Series: VDK 200 A

Max. perm. operating pressure: **0.36 bar**

Ambient temperature: -10°C to +60°C VDK is a compact device. Pump, pressure switch and solenoid valve are installed in the Silumin cast housing base and the control is installed in the plastic top part. Voltage: 220 V AC -15% up to 240 V AC + 6% Frequency: 50 Hz Protection class: IP 40

DK 2 leak test system

Max. perm. operating pressure: **independent** Ambient temperature: -10°C to +60°C

DK 2F (DK 2A) leak testers test the leakage of two consecutive gas solenoid valves in connection with one or two gas pressure switches and auxiliary valves. A synchronous gear motor controls the DK 2 program procedure using switching cams via micro switch.

Voltage: 220 V AC -15% up to 240 V AC + 6% Frequency: 50 Hz Protection class: IP 40

The gas inlet valve is tested by emptying the test section and monitoring the pressure increase. The burner valve is tested by filling the test section and monitoring the pressure reduction. DC solenoid, rectifier and protected circuit in terminal box

Measuring/ignition gas connections on both sides G 1/4 DIN ISO 228 in the inlet pressure zone, additionally at the front G 3/4 from DN 40 onwards (flange version). Voltage: 220 V AC (+10% -15%)

50-60 Hz - other voltages on request. Pipe thread as defined in ISO 7/1 Flange: Connection flange to DIN 2501, Part 1, matching pre-weld flanges as defined in DIN 2633 (PN 16).

Main contact mountable to check the closed position of the valve.

Refer to DUNGS solenoid valve datasheets for detailed information on solenoid valve versions, e.g. slow-opening, two-step, protection classes, etc.

Max. test volume: approx. 10 l or 20 l (for 0.36 bar), test time: 30 s Leak gas volume: <30 l/h (limit rate) Installation position: vertical, horizontal Pipe connection on inlet and output sides 12 mm dia. pipe with ball ring threaded joint.

See DUNGS datasheets for detailed information on the VDK Compact valve leak tester.

Refer to Test volumes Table for operating ranges.

If the pressure increases during the first test phase above permitted levels or if the pressure drops excessively during the second test phase, the DK2 interlocks in fault position and prevents burner activation or gas release.

For detailed information on the DK valve leak testers, refer DUNGS

Block diagram of DK 2

Legend

- V1 Safety solenoid valve
- V2 Burner solenoid valve
- V3 Test gas solenoid valve
- V4 Vent solenoid valve
- LGV Leak gas solenoid valve
- P 1/2 Test pressure switch

To define a gas regulating train, the following gas specifications must be	1. Gas specifications for regulating train	2. Firing system
known.	Gas type: Natural gas / town gas	Max. heating performance: kW Max. gas flow rate m ³ /h
The specifications for firing systems help to define the train to system requirements.	Density relationship (to air = 1):dv Heating value H_u/m_n^3 : MJ/kW Inlet pressure P_i : bar Output pressure P_a : mbar SAV trip pressure: mbar Max. flow rate.: m_n^3/h Min. flow rate.: m_n^3/h	Divided in single thermal power ratings:

Estimated flow rate conversion dependent on density relationship

Natural gas dv 0,65	0 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 1	220 240 260 280 300 320 340 360 1 1 1 1 1 1 1 1 1
Air dv 1,00	0 10 20 30 40 50 60 70 80 90 100 120 140 160	1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>
Town gas dv 0,47	0 20 40 60 80 100 120 140 160 180 200 220 240 	260 280 300 320 340 360 380 400 420 440
Fluid gas dv 1,70	I I	<u>140 160 180 200 220</u>

Calculation of fitting nominal widths (example: calculation of all pressure losses)

Pressure losses atm³/h mbar				$\Sigma P_F = Pr$ firi	essure losse ng system	es of	
P _k Firing chamber/waste gas resistances				ΣP_{G} = Sum of pressure losse		Ire losses	
Рв	Burner head/burner resistances				2FG2 - 10 ma	argin	1033 0110
P L	Pipes, bends, etc. upstream of burne	er fittings			alterna	ative	mbar
Item	Fittings	Туре	DN	ΣPF	Туре	DN	<i>∑</i> PF
1	Control valve						
2	Burner solenoid valve						
3	Safety solenoid valve						
4	Gas pressure regulator						
5	Filter						
6	Ball valve						
7	Safety shut-off valve						
Total	oressure loss calculated		ΣPG		alterna	ative <i>S</i> PG	
10% s	safety margin	x 1,10	ΣPGZ			<i>Σ</i> PG	

Definition of control valve and solenoid valve nominal widths

After defining the system resistances, a nominal width is selected depending on the flow rate.

Control value and solenoid values are sized so that the sum of all pressure losses is less than the output pressure P_0 of the gas pressure regulator.

Example for reading off the control valve size:

Required flow rate = 300 m^3 n/h natural gas

DN 65: Low pressure loss of 2.3 mbar, but poor regulation since the flow rates only modify to an opening angle of approx. 50°.

DN 50: Pressure loss of 6.5 mbar, good regulation (flow rate modification) up to an opening angle of approx. 72°.

DN 40: High pressure loss of 20 mbar, but good regulation over the total adjustment range of 0-90°.

If a DN 65 line exists and if a higher pressure loss is possible, DN 40 flap can be installed with a DN 40 reduction.

Control valve flow rate characteristic

Nominal Width Definition of Regulating Train Fittings Dependent on Flow Rate and Pressure Difference

Diagram to define the size of the pipe nominal widths:

Definition of pipe nominal widths

If the flow velocity limit value of 30 m/ s (standard for the gas line) is not excee-ded in the connection pipes, flow noise in a gas pressure system is normally a secondary factor.

For industrial systems, the limit value can be 50 m/s.

However, if there are higher flow velocities in the system or even in partial sy-stem zones (e.g. in the safety fittings), the impact of flow noise on total noise must be taken into account.

Irregularities in the flow route are the cause of flow noises. Any deviation, diameter modification or inserts as well as flow behaviour in the limit zone result in local changes in flow velocity and thus in instabilities which may cause noise.

Example for the definition of a pipe no-minal width:

10000 m_{3n}/h 5000 2000 mm Flow rate natural gas dv= 0.65 (air =1) 1000 500 300 300 200 250 200 100 150 125 50 widths 100 3 20 Velocities 80 65 10 nominal 50 40 FION 32 25 pipe | 20 15 Δ Flow rate $q_{n max.}$ Gas pressure inlet p_i 500 m³ /h calculated: 3 bar required DN for 40 mm inlet

0.5 bar

30 m/s

required DN for 65 mm output

Size definition of control valve nominal width, volume flow V in m³ /h

Gas pressure output p

Flow velocity

The control valve must be sized so that the flow rate can be modified at the largest opening angle possible.

See example on page 12: Definition of control valve nominal width and flow rate characteristic

1 Natural gas $d_v = 0.65$

- 2 Town gas $d_v = 0.45$
- 3 Fluid gas $d_v = 1.56$
- 4 Air $d_v = 1.00$

Nominal Width Definition of Regulating Train Fittings Dependent on Flow Rate and Pressure Difference

Flow rate and pressure difference of solenoid valves

When calculating the pres-sure difference of solenoid valves, consider that **two** solenoid valves are built in the regulating train, i.e. one burner and one safety solenoid valve.

- 2 Town gas $d_v = 0.45$
- 3 Fluid gas $d_v = 1.56$
- 4 Air $d_{v} = 1.00$

Flow rate and pressure difference of ball valve and GF gas filter types

Size gas filter and ball valve so that the max. pres-sure loss is less than 50 mbar.

The permitted flow velocity is not exceeded with this value and the requested dust separation is attained.

For low inlet pressures (under 200 mbar), the max. pressure loss should not exceed 10 mbar.

Select filter and ball valve nominal width so that the pressure loss remains relatively low. As regards the selection of pressure regulators, a larger pressure drop is available.

Performance characteristics of S 100 safey shut-off valve

SL 10 safety shut-off valve

Nominal Width Definition of Regulating Train Fittings Dependent on Flow Rate and Pressure Difference Performance characteristics of R 101 pressure regulator

Performance characteristic of gas pressure regulator and built-in RS 250 safety shut-off valve

Example of pressure regulator selection:

Remark:

The regulator pressure difference must be less than the max. possible pressure loss.

System parameters:

Flow rate Inlet pressure Output pressure

p_i - p_a

Selection:

1000 m³_/h	Pressure regulator	R 101
1.5 bar "	Nominal width	DN 65
0.3 bar	F8 spring/160 diaphragm	1400 mbar
1.2 bar	Pressure difference	700 mbar
	Pressure regulator and S	AV R 250
	Nominal width	DN 80
	12 spring	500 mbar
	Pressure difference	850 mbar

Nominal Width Definition of Regulating Train Fittings Dependent on Flow Rate and Pressure Difference Performance characteristic of gas pressure regulator and built-in RS 251 safety shut-off valve

Example of pressure regulator selection:

Remark:

The regulator pressure difference must be less than the max. possible pressure loss.

System parameters:

Flow rate

p_i - p_a

Inlet pressure

Output pressure

		001
620 m 0.5 ba 0.2 ba	³ "/h ar ar	Pre Noi 09
300 m	ıbar	Pre

Selection:

Pressure regulator a	and SAV RS 251
Nominal width	DN 50
09 spring	190-250 mbar
Pressure difference	250 mbar

Installation and mounting

The prevailing guidelines and regulations as defined in DVGW and DIN for installing and commissioning the regulating train must be observed.

Only trained and qualified personnel must be permitted to perform work on gas regulators and safety devices.

Install the regulating train directly upstream of the gas-consuming devices.

Install the regulating train so that the direction arrows point towards the filter, safety shut-off valve, pressure regulator and solenoid valves in the direction of gas flow.

Normally, the gas passage is horizontally. The installation of the regulating trains is independent of position due to the spring loads. The device works therefore in any position.

If necessary, re-adjust the output pressure.

Position the pulse lines for SAV and pressure regulator so that you can monitor a steady output pressure (approx. 10 x DN). Designed with 12 mm dia. steel pipe and cutting ring unions.

Take particular care that pulse lines are not damaged during mounting.

Connect the vent lines to the vent connections and route them outdoors.

Ensure that the sealing rings are inserted.

Ensure that the connection lines and the devices are free from contamination to avoid damages and operational faults.

Leak test

Perform a leak test on the fully mounted gas regulating train at the erection site using air or inert gas at 1.1 times the highest permitted operating pressure.

Connect the tester to the gas filter or SAV. Close the shut-off valve upstream of the gas filter and open the SAV and the pressure compensation valve at the SAV.

Test the pressure regulator function before commissioning. This also includes the close position of the SAVs.

Commissioning

Slowly open the ball valve upstream of the regulating train and then the burner ball valve (if installed).

Observe the output pressure at the manometer and, if necessary, re-adjust at the load spring. Ensure that there is no zero consumption, otherwise the closing pressure must also be measured.

The output pressure in the pressure regulator, the switch-off pressure in the SAV and the vent pressure in the SBV are set at our factory to the values specified in the enclosed datasheet.

Output pressure adjustment

The output pressure Pa must be higher than the sum of resistances of all downstream fittings and gas-consuming devices.

If it is necessary to correct the output pressure, re-adjust the pressure regulator setting screw. Open the closing cover. Then change the pressure to the desired value by turning the setting screw. Pressure will increase by turning clockwise.

You can only adjust the output pressure P_a while gas is flowing.

This can be performed during operation since all gas-conveying chambers in the regulator are closed.

If the SAV close due to a operating fault at the pressure regulator, you can manually open the SAV after eliminating the fault.

SBV adjustment

Adjust the safety blow-off valve before adjusting the SAV setpoint.

After you have successfully set the burner, switch off the regulator.

Determine the pressure at which the SBV blows off (noise!) by turning the SBV setting screw counterclockwise. At the same time observe the output manometer.

Re-adjust the vent pressure to a higher value by turning the setting screw clockwise.

Switch off the burner nominal load to attain a higher pressure peak.

Set the vent pressure by approx. 20 mbar higher than the already determined pressure by turning the setting screw counterclockwise.

Ensure that the vent pressure P_0 (approx. 1.1. to 1.3 • Pa) is lower than the max. perm. operating pressure of the solenoid valves. $P_0 = < P_{max}$ solenoid valves.

Ensure that the shut-off valve upstream of the SBV is always open since it only monitors the SAV function.

SAV release

A ball valve is mounted on the regulator housing to compensate the pressure upstream and downstream the valve seat.

After opening the pressure compensation valve, you can again release the SAV easily by hand using the reset button.

To open the SAV valve plate, firstly remove the closing cover and then the valve bar until the ball lock shut-off reengages. After removing the closing cover, some leak gas can escape at the valve bar. This is not dangerous. When the SAV is released, screw the closing cover and seal back on again. The safety shut-off valve is again ready to operate. Perform a leak test on the closing cover (soap using nekal or soap solution).

SAV release

SAV function test and SAV adjustment

Perform a test by switching off the burner:

Adjusting the overpressure switch-off: $P_s = \sim 1, 4..1, 6 \cdot P_a$

SAV trips

Increase the switch-off pressure by turning the SAV setting screw clockwise until the SAV no longer trips when the regulator switches off.

SAV does not trip

Reduce the switch-off pressure by turning the setting screw counterclockwise until the SAV trips when the regulator switches off. After determining the switch-off pressure, turn the setting screw by 1/2 to 1 turn clockwise.

Check by performing further regulator switch-offs whether the SAV remains open.

The SAV cannot be released

This occurs when the blow-off pressure of the SBV is set higher than the switch-off pressure of the SAV.

The SAV does not engage: Excessive pressure in the SAV pulse line must be relieved.

Adjusting switch-off at pressure drop: **P**_{min} = ~0,5..0,6 · **P**_a

Increase the switch-off pressure in the event of pressure drop by turning the setting screw for pressure drop clock-wise.

Reduce by turning counterclockwise.

Fault causes

Vibrations

They are very often attributed to the regulator although they mostly occur in the gas supply line to the burner. Check first whether the regulating train and pipe are properly supported and do not contain any fittings which cause vibration (semi-open valves, broken diaphragm or valve stem guides, etc.).

Pulsation

Since the pressure regulator has a large nozzle with very high flow rate in comparison with the connection nominal width, the valve plate can only raise a little from the nozzle and the regulator may become instable.

If the regulator pulsates at normal flow rates, restrict the pulse line using a choke. A reduction in the pulse line diameter often causes damping and thus a slower response of the pressure regulator.

A reduction of the vent diameter often stops pulsing in the pressure regulator.

Use a different spring and the requested result will be achieved subject to the operating conditions.

If the minimum flow rates are under 10% of the maximum rate specified for the relevant operating pressures, we can install a steeper regulator cone at our factory.

No zero shut-off

Caused by: damaged valve seat, untight nozzle mounting damaged nozzle or contamination The valve plate is easily accessible after removing the inspection plate.

You can remove the complete SAV mechanisms when an SAV fault occurs. The housing remains in the pipe and this results in less servicing.

Maintenance

The regulating train comprising pressure regulator and safety devices is main-tenance-free.

The train may require cleansing, depending on the contamination, humidity and chemical composition of the gas.

Clean the gas filter located upstream of the regulator group at regular intervals or meter the contamination by performing difference pressure measurements.

Technical Specifications, Dimensions, Ordering Information

KH ball valves

Housing made of grey cast-iron

Housing made of aluminium

Housing made of grey cast-iron

Housing made of aluminium

٦

KH	R — ►
	Ī
Z	V

Connec- tion	Type KH	P _{max.} bar	L	Н	R	SW	Weight kg	Order no.
DN 40	160040		140	133	250		6.80	098 467
DN 50	160050		150	140	250		12.00	098 475
DN 65	160065	16.0	170	158	250		16.20	098 483
DN 80	160080		180	182	350		20.50	098 491
DN 100	160100		190	194	350		23.50	098 509
DN 125	160125		325	195	500		60.50	096 792
DN 150	160150		350	210	700		83.50	096 800
DN 200	160200		400	245	700		121.00	096 818
Rp 1/2	4005/1	4.0	61	45	100	27	0.25	098 418
Rp 3/4	4007/1	4.0	74	53	120	32	0.45	098 426

GF

Со ti DN

GF gas filters

Con tio	nec- n	Type GF	P _{max.} bar	L	ØD	н	С	Weight kg	Order no.
DN	40	40040/2		200	125	125	180	2.40	102 475
DN	50	40050/2		230	145	145	205	3.50	102 483
DN	65	40065/2	4.0	290	185	185	275	5.50	102 491
DN	80	40080/2		310	200	185	270	6.90	102 509
DN [·]	100	40100/2		350	220	200	285	9.40	102 517

High-pressure filters

Con tio	nec- n	Туре	P _{max.} bar	L	Н	H	H ₂	С	ØD	Weight kg
DN	25	254 016		145	115	58	58	100	115	4.3
DN	40	404 016		195	150	75	75	130	150	7.7
DN	50	506 016		210	203	90	113	170	165	12.4
DN	80	806 016	16.0	268	323	135	188	290	200	27.3
DN 1	100	1006 016		318	392	167	225	350	220	41.0
DN 1	125	1256 016		360	457	188	269	410	250	55.0
DN 1	150	1506 016		400	542	225	317	500	285	77.0

MVD solenoid valves

Con tio	nec- on	Type MVD	P _{max.} bar	L	Н	С	ØD	Weight kg	Order no.
DN	25	2025/5		160	160	130	100	3.70	110 882
DN	40	2040/5		200	205	170	125	5.00	111 146
DN	50	2050/5		230	215	170	145	7.30	111 187
DN	65	2065/5	0.20	290	275	215	185	12.50	169 390
DN	80	2080/5		310	315	245	200	18.00	169 400
DN ⁻	100	2100/5		350	395	310	220	30.00	196 410
DN ⁻	125	2125/5		400	445	392	250	56.00	159 830
DN [•]	150	2150/5		480	590	425	285	62.00	160 050
DN 2	200	2200		600	755	555	340	123.00	018 978

Refer to datasheet "Solenoid valves" for solenoid valves with P $_{\rm max}$ 0.5 bar - types MVD 5.../5 up to DN 150 and double solenoid valves up to DN 100 or other specifications.

HD - Filter

MVD

Technical Specifications, Dimensions, Ordering Information

R 101 gas pressure regulators

Housing made of Silumin cast

R 101

Connec- tion	P _i max. bar	P _a max. mbar	Α	В	D	L	Weight kg	Order spec.
DN 25			75	350	320	160	10.0	P _i , P _a
DN 40			75	350	320	160	11.0	0
DN 50	4.0	750	115	395	265	250	14.0	Q
DN 65			105	375	375	220	20.0	
DN 100			200	600	375	350	35.0	
DN 50-K	4.0	750	100	345	320	180	12.0	

S 100 safety shut-off valves

Housing made of Silumin cast

Connec- tion	P _i max. bar	P _a max. mbar	Α	В	С	D	L	Weight kg	Order spec.
DN 25			70	250	215	160/320	160	3.5	Trip
DN 40			100	350	230	160/320	160	5.0	pressure
DN 50			115	360	340	265/375	250	8.5	P _s
DN 65			110	375	330	265/375	220	7.0	P =
DN 80	4.0	0.3	140	385	350	265/375	280	13.0	~1.41.6 [.] P _a
DN 100			150	395	360	265/375	300	15.0	
DN 150			195	590	410	265/375	380	32.0	Q
DN 200			240	635	460	265/375	420	49.0	
DN 50-K	4.0	0.3	100	345	230	160/320	180	5.5	

RS 250/251

⊲

ġ

SL 10

⊲

∩ ∎ d —► —_ I

മ

Г

Z

° °

Z

RS 250 gas pressure regulators with built-in safety shut-off valve

Connec- tion	P _i max. bar	P _a max. bar	Α	В	D	d	L	Weight kg **	Order spec.
DN 25			325	275	160/230	162	230	10	P _i , P _a
DN 50			345	280	160/230	162	230	14/24*	5
DN 80	6.0	1.2	400	300	205/375	162	310	26/40*	Ps
DN 100			415	320	205/375	162	350	32/48*	Q
DN 150			740	425	265/485	185	480	110*	
DN 200	4.0		810	450	265/485	185	600	75	

**Housing made of Silumin cast, on request GGG 40

RS 251 gas pressure regulators with built-in safety shut-off valve

Connec- tion	P _e max. bar	P _a max. mbar	Α	В	D	d	L	Weight kg	Order spec.
DN 50	4.0	750	440	260	265	162	310	18	S.
DN 80			680	320	375	162	410	28	RS 250

SL 10 safety blow-off valves

Housing made of Silumin cast

Connec- tion	P max. bar	P max. bar	Α	В	D	L	Weight kg	Order spec.
Rp 1			180	50	145	100	2.5	Opening
Rp 1 1/2	10.0	1.0	215	55	145	140	3.5	pressure P
Rp 2			225	60	145	160	4.0	P _o = ~1,11,3·P _a

All dimensions refer to standard versions.

 P_{e} max.-specifications in accordance with the test as defined in DIN DVGW.

Control valve

Control valve with motor drive

Compensator

Intermediate ring

Reduction

Pre-weld flange

Technical Specifications, Dimensions, Ordering Information

URG-6-G control valve

Housing made of grey cast-iron

Connec- tion	P _{max.} bar	В	D	С	Н	F	G	Weigh w/o Mot	t kg or with
DN 25		25	60	73	130	100	105	2.20	4.80
DN 40		25	75	81	138	100	105	2.50	5.10
DN 50		25	85	84	141	100	105	2.70	5.30
DN 65	6.0	25	105	93	153	115	120	3.00	5.60
DN 80		30	120	103	163	115	120	4.00	6.60
DN 100		30	140	113	173	115	120	4.50	7.10
DN 125		35	170	135	200	115	150	5.80	8.40
DN 150		40	195	145	212	115	150	6.50	9.90
DN 200		40	255	174	239	115	150	11.00	14.40

St FB compensators

Intermediate rings

Connec- tion		P _{max.} bar	L	Weight kg	Order no.	ØA	ØΒ	Weight kg	Order no.
DN	40		75	4.00	217 221	45	93	0.66	196 300
DN	50		95	4.80	217 222	57	105	0.80	196 310
DN	65		110	5.80	217 223	76	125	0.98	196 320
DN	80	10.0	125	7.50	217 224	89	140	1.20	196 330
DN 1	00		150	8.70	170 970	108	160	1.46	196 340
DN 1	25		175	11.00	217 225	133	192	1.74	196 350
DN 1	50		200	13.50	217 226	159	218	2.05	196 360
DN 2	200		240	18.00	217 227	216	273	2.40	196 370

PN 16 pre-weld flanges

1

Reductions

Steadying zones

DN/DN ₁	ØD	Øk	h ₁	d ₂	DN ₂	L	Connec- tion	Rp	L
40	150	110	42	18	50	167	DN 40	inclu-	620
50	165	125	45	18	65	184	DN 50	ding	620
65	185	145	45	18	80	189	DN 65	Rp 1/4	620
80	200	160	50	18	100	206	DN 80	Rp 1/2	670
100	220	180	52	18	125	238	DN 100	Rp 1	670
125	250	210	55	18	150	254	DN 125	threads	750
150	285	240	55	23	200	273	DN 150	others on	920
200	340	295	62	23			DN 200	request	1190

Steadying zone

DUNGS Safety Engineering - System Solutions From One Source

Gas regulating trains

DUNGS engineers manufactures complete systems at their factory in Osnabrück: Gas regulating and safety trains for industrial, thermal production processes, with inlet pressures up to 4 bar and nominal widths up to DN 200.

Each system is designed accor-ding to the special requirements of the customer and the regulations of DVGW, DIN and TRGI and are manufactured based on the common directives of gas sup-pliers or regional directives.

In addition to fittings and compo-nents of the DUNGS product range, devices of known manufactu-rers are also used.

Since 1970 more than 20,000 gas trains have been manufactured for projects inland and abroad.

Switching systems

DUNGS has been manufacturing custom, high-quality control cabi-nets for thermal, vent and process engineering projects for more than 40 years.

On request, we can prepare and offer a switching system designed for your gas regulating train project. Refer to the datasheet for detailed informations on DUNGS control cabinets.

Example: Customer-specific gas regulating train for a lignite dust firing with auxiliary natural gas firing

- 1 Ball valve
- 2 Manometer with pressure pushbutton valve
- 3 Filter
- 4 Safety shut-off valve (SAV)
- 5 Gas pressure regulator
- 6 Safety blow-off valve (SBV)
- Min. pressure switch
- 8 Test burner

7

- 9 Compensator
- 10 Solenoid valve
- 10.1 Bypass solenoid valve
- 11 Leak tester, DK 2 system
- 11.1 Test pressure switch
- 11.2 Test solenoid valve
- 11.3 Leak gas solenoid valve
- 12 Gas control valve
- 13 Reset device
- 14 Firing

DUNGS Product Range

Automatic gas-firing machines Flame switches Test and control devices Valve leak testers Pressure sensors Flow sensors/switches Modules Control cabinets

Gas pressure regulators Gas solenoid valves Double solenoid valves MultiBlocs Ball valves Gas filter Test burners, ignition burners Accessories

Gas pressure switches Air pressure switches Centrifugal switches KlimaSets Main contacts

Gas safety and regulating trains

Gas Safety and Regulating Trains for Inlet Pressures up to max. 4 bar

DUNGS®

Industrial gas safety and regulating systems Consulting Engineering Production Marketing and sales Karl Dungs GmbH & Co. Werk Osnabrück Systeme Kiebitzheide 34 D-49084 Osnabrück Tel. +49 (0)541-50 04 20 Fax +49 (0)541-50 04 22 4

Subject to change in the interest of technical progress.

Head Offices and Factory Karl Dungs GmbH & Co. Siemensstraße 6-10 D-73660 Urbach, Germany Telephone +49 (0)7181-804-0 Fax +49 (0)7181-804-166 Postal address Karl Dungs GmbH & Co. Postfach 12 29 D-73602 Schorndorf, Germany e-mail info@dungs.com Internet www.dungs.com